高温低电阻测试仪器高温绝缘电阻高低温介电温谱测试仪冷热台高温介电温谱测试仪铁电分析仪压电系数测试仪热释电系数测试仪PVDF 薄膜极化TSDC热刺激电流测试仪高压极化电源薄膜高压功率放大器多通道介电测试系统高温四探针高温退火炉简易探针台小型探针台中端探针台双面探针天综合性分析探针台高低温探针台高低温真空探针台电介质充放电系统高压TSDC激光测振仪200V功率放大器500V功率放大器700V功率放大器1kV功率放大器2kV功率放大器4kV功率放大器5kV功率放大器8kV功率放大器10kV功率放大器20kV功率放大器30kV功率放大器40kV功率放大器功能材料科研仪器静电计电线电缆耐电痕试验仪高频脉冲耐电晕高压漆膜连续性电压击穿试验仪闭孔温度、破孔温度测试仪电弱点测试仪50点耐压测试系统隔膜气密性测试系统脉冲电声法(PEA)直流或交流场下的空间电荷测量系统长期耐腐蚀老化试验平台耐电弧试验仪低压漏电起痕试验仪高压漏电起痕试验仪漆包线电压击穿试验仪行业检测设备忆阻器单元研发测试方案纳米发电机测试方案电运输特性测试方案mosfet测试方案半导体晶圆测试方案锂电池生产工程的解决方案介电材料的解决方案材料测试解决方案电迁移评估系统-AMI系列电迁移评估系统-AME系列电迁移评估系统-AMQPCB压接型IGBT器件封装的电热力多物理量均衡调控方法大功率新能源精彩视频干货文章亮点详解测量技巧

脉冲电声法(PEA)直流或交流 场下的空间电荷测量系统

产品介绍:电声脉冲法是一种无损的空间电荷测量技术。它用于描述聚合物绝缘材料内部的空间电荷分布、积累及其整体行为。

空间电荷观测正在成为评估直流绝缘应用(尤其是高压电缆)中的聚合物材料测试时,使用广泛的技术。实际上,经过充分的评估,空间电荷的存在是导致高压直流聚合物电缆过早失效的主要原因,而且也是防止此类电缆快速劣化的主要原因。而且,已经表明可以通过空间电荷测量来诊断在使用应力下的绝缘劣化。但是,仍然缺少由空间电荷测量并且也与绝缘体的电气性能有关产生大量数据,来帮助总结和解释。

工作原理:在绝缘材料样品的电极之间施加周期性的高压脉冲。这种脉冲的特点是上升时间很快,持续时间很短。绝缘材料的试样也要经受高压直流电(等级取决于试样的厚度和形状),这会导致绝缘材料层中的空间电荷积聚。每个脉冲产生的电场扰动绝缘材料中的内部电荷。这些电荷在每一层都产生相应的声压波。压电传感器器检测声波,利用传感器信号获得空间电荷分布。为了描述空间电荷分布及其时间特性,可以对施加每个高压脉冲后检测到的此类信号进行详细分析。

目前,绝大多数的电声脉冲法(pulsed electro- acoustic method,PEA)空间电荷测量装置均使用 β相的聚偏氟乙烯(polyvinylidene fluoride,PVDF)有机聚合物薄膜作为压电传感器。在温度低于 90℃时,PVDF 才能保持其压电性能稳定。在 70℃~90℃范围内,其压电应变常数(d33)随温度升高反而减小。因此,现有的绝大多数空间电荷测量只在 70℃以内进行。只有日本武藏工业大学Tatsuo Takada教授的课题组采用过铌酸锂(LiNbO3)压电元件,开发了适用于高温(可高达150℃)时 PEA 法空间电荷测量装置。由于加工工艺和成本的限制,目前很难获得厚度小于50μm的LiNbO3 压电晶片。除日本外,其他地方还未见采用 LiNbO3传感器的 PEA 法空间电荷测量系统。与 PVDF 等有机聚合物传感器相比,虽然无机晶体LiNbO3 适用温度高,并且声波透射系数大(以铝板作为下电极时),但是压电电压常数小、性能综合评价系数低、难加工成很薄的压电晶片。本文选择新型耐高温共聚物压电传感器、重新设计电极系统,开发了适用于高温下(≤110℃)的PEA 法空间电荷测量系统,分析了温度对压电传感器性能、声信号的传播特性和穿过介质特性的影响,得出了对放大器输出的电压信号和空间电荷密度值的影响因素,进而校正了温度对 PEA测量系统的影响。利用建立的高温 PEA 法空间电荷测量系统,测量了纯环氧试样在不同温度下空间电荷产生、积聚及消散的特性。

3.png

原理图